MATH2050C Selected Solution to Assignment 6

Section 3.5

(5) Using $\sqrt{n+1}-\sqrt{n}=1 /(\sqrt{n+1}+\sqrt{n})$, it is easy to see that $x_{n} \rightarrow 0$ as $n \rightarrow \infty$. However, since x_{n} is unbounded, it cannot be a Cauchy sequence. (Every Cauchy sequence is convergent and hence is necessarily bounded.)
(13) It is clear that $2 \leq x_{n}$ for all n. Therefore,

$$
\left|x_{n+2}-x_{n+1}\right|=\frac{1}{x_{n+1} x_{n}}\left|x_{n+1}-x_{n}\right| \leq \frac{1}{2} \times \frac{1}{2}\left|x_{n+1}-x_{n}\right|
$$

hence $\left\{x_{n}\right\}$ is contractive with $\gamma=1 / 4$. Consequently its limit exists and is the positive root of $x=2+1 / x$ which is $x=1+\sqrt{2}$.
(14) Define $x_{n+1}=\left(x_{n}^{3}+1\right) / 5$. By induction one can show that $0<x_{n}<2 / 5, n \geq 2$, if $x_{1} \in(0,1)$. Then
$\left|x_{n+2}-x_{n+1}\right|=\frac{1}{5}\left|x_{n+1}^{3}-x_{n}^{3}\right|=\left|x_{n+1}^{2}+x_{n+1} x_{n}+x_{n}^{2}\right|\left|x_{n+1}-x_{n}\right| \leq \frac{3}{5} \times \frac{4}{25}\left|x_{n+1}-x_{n}\right|=\frac{12}{125}\left|x_{n+1}-x_{n}\right|$,
so x_{n} is contractive. Its limit is a root of $x^{3}-5 x+1=0$ in the range $(0,2 / 5)$.

Supplementary Problems

1. Define the Fibonacci sequence by $f_{n+2}=f_{n+1}+f_{n}, f_{1}=f_{2}=1$. Show that

$$
f_{n}=\frac{1}{\sqrt{5}}\left(\left(\frac{1+\sqrt{5}}{2}\right)^{n}-\left(\frac{1-\sqrt{5}}{2}\right)^{n}\right)
$$

Hint: $(1 \pm \sqrt{5}) / 2$ are two roots of $x^{2}=x+1$ and f_{n} should be given by their linear combination.
Solution Let $a=\frac{1+\sqrt{5}}{2}$ and $b=\frac{1-\sqrt{5}}{2}$ be the two roots of $x^{2}=x+1$. Then $a^{n+2}=$ $a^{n+1}+a^{n}$ and $b^{n+2}=b^{n+1}+b^{n}$ so for any constants $c_{1}, c_{2}, u_{n}=c_{1} a^{n}+c_{2} b^{n}$ satisfies $u_{n+2}=u_{n+1}+u_{n}$. Now it suffices to choose c_{1}, c_{2} such that $u_{1}=u_{2}=1$. That is, to solve the linear system $a c_{1}+b c_{2}=1, a^{2} c_{1}+b^{2} c_{2}=1$. It is straightforward to get $c_{1}=1 / \sqrt{5}, c_{2}=-1 / \sqrt{5}$.

